750 research outputs found

    Dominance of gauge artifact in the consistency relation for the primordial bispectrum

    Full text link
    The conventional cosmological perturbation theory has been performed under the assumption that we know the whole spatial region of the universe with infinite volume. This is, however, not the case in the actual observations because observable portion of the universe is limited. To give a theoretical prediction to the observable fluctuations, gauge-invariant observables should be composed of the information in our local observable universe with finite volume. From this point of view, we reexamine the primordial non-Gaussianity in single field models, focusing on the bispectrum in the squeezed limit. A conventional prediction states that the bispectrum in this limit is related to the power spectrum through the so-called consistency relation. However, it turns out that, if we adopt a genuine gauge invariant variable which is naturally composed purely of the information in our local universe, the leading term for the bispectrum in the squeezed limit predicted by the consistency relation vanishes.Comment: 12 pages; v2: accepted version in JCA

    The curvature perturbation at second order

    Get PDF
    We give an explicit relation, up to second-order terms, between scalar-field fluctuations defined on spatially-flat slices and the curvature perturbation on uniform-density slices. This expression is a necessary ingredient for calculating observable quantities at second-order and beyond in multiple-field inflation. We show that traditional cosmological perturbation theory and the `separate universe' approach yield equivalent expressions for superhorizon wavenumbers, and in particular that all nonlocal terms can be eliminated from the perturbation-theory expressions

    Transport equations for the inflationary trispectrum

    Get PDF
    We use transport techniques to calculate the trispectrum produced in multiple-field inflationary models with canonical kinetic terms. Our method allows the time evolution of the local trispectrum parameters, tauNL and gNL, to be tracked throughout the inflationary phase. We illustrate our approach using examples. We give a simplified method to calculate the superhorizon part of the relation between field fluctuations on spatially flat hypersurfaces and the curvature perturbation on uniform density slices, and obtain its third-order part for the first time. We clarify how the 'backwards' formalism of Yokoyama et al. relates to our analysis and other recent work. We supply explicit formulae which enable each inflationary observable to be computed in any canonical model of interest, using a suitable first-order ODE solver.Comment: 24 pages, plus references and appendix. v2: matches version published in JCAP; typo fixed in Eq. (54

    The δN formula is the dynamical renormalization group

    Get PDF
    We derive the 'separate universe' method for the inflationary bispectrum, beginning directly from a field-theory calculation. We work to tree-level in quantum effects but to all orders in the slow-roll expansion, with masses accommodated perturbatively. Our method provides a systematic basis to account for novel sources of time-dependence in inflationary correlation functions, and has immediate applications. First, we use our result to obtain the correct matching prescription between the 'quantum' and 'classical' parts of the separate universe computation. Second, we elaborate on the application of this method in situations where its validity is not clear. As a by-product of our calculation we give the leading slow-roll corrections to the three-point function of field fluctuations on spatially flat hypersurfaces in a canonical, multiple-field model.Comment: v1: 33 pages, plus appendix and references; 5 figures. v2: typographical typos fixed, minor changes to the main text and abstract, reference added; matches version published in JCA

    Primordial Trispectrum from Entropy Perturbations in Multifield DBI Model

    Full text link
    We investigate the primordial trispectra of the general multifield DBI inflationary model. In contrast with the single field model, the entropic modes can source the curvature perturbations on the super horizon scales, so we calculate the contributions from the interaction of four entropic modes mediating one adiabatic mode to the trispectra, at the large transfer limit (TRS≫1T_{RS}\gg1). We obtained the general form of the 4-point correlation functions, plotted the shape diagrams in two specific momenta configurations, "equilateral configuration" and "specialized configuration". Our figures showed that we can easily distinguish the two different momenta configurations.Comment: 17pages, 7 figures, version to appear in JCA

    The inflationary bispectrum with curved field-space

    Get PDF
    We compute the covariant three-point function near horizon-crossing for a system of slowly-rolling scalar fields during an inflationary epoch, allowing for an arbitrary field-space metric. We show explicitly how to compute its subsequent evolution using a covariantized version of the separate universe or "delta-N" expansion, which must be augmented by terms measuring curvature of the field-space manifold, and give the nonlinear gauge transformation to the comoving curvature perturbation. Nonlinearities induced by the field-space curvature terms are a new and potentially significant source of non-Gaussianity. We show how inflationary models with non-minimal coupling to the spacetime Ricci scalar can be accommodated within this framework. This yields a simple toolkit allowing the bispectrum to be computed in models with non-negligible field-space curvature.Comment: 22 pages, plus appendix and reference

    de Sitter limit of inflation and nonlinear perturbation theory

    Full text link
    We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gauge, and show that it vanishes sufficiently fast in the de Sitter limit. By studying the de Sitter limit, we then extrapolate to the n'th order action of the comoving curvature perturbation and discuss the slow-roll order of the n-point correlation function.Comment: 14 pages, 1 figure; typos corrected and discussion of tensor modes adde

    Large non-Gaussianities in the Effective Field Theory Approach to Single-Field Inflation: the Bispectrum

    Get PDF
    The methods of effective field theory are used to study generic theories of inflation with a single inflaton field and to perform a general analysis of the associated non-Gaussianities. We investigate the amplitudes and shapes of the various generic three-point correlators, the bispectra, which may be generated by different classes of single-field inflationary models. Besides the well-known results for the DBI-like models and the ghost inflationary theories, we point out that curvature-related interactions may give rise to large non-Gaussianities in the form of bispectra characterized by a flat shape which, quite interestingly, is independently produced by several interaction terms. In a subsequent work, we will perform a similar general analysis for the non-Gaussianities generated by the generic four-point correlator, the trispectrum.Comment: Version matching the one published in JCAP, 2 typos fixed, references added. 30 pages, 20 figure

    A parton picture of de Sitter space during slow-roll inflation

    Full text link
    It is well-known that expectation values in de Sitter space are afflicted by infra-red divergences. Long ago, Starobinsky proposed that infra-red effects in de Sitter space could be accommodated by evolving the long-wavelength part of the field according to the classical field equations plus a stochastic source term. I argue that--when quantum-mechanical loop corrections are taken into account--the separate-universe picture of superhorizon evolution in de Sitter space is equivalent, in a certain leading-logarithm approximation, to Starobinsky's stochastic approach. In particular, the time evolution of a box of de Sitter space can be understood in exact analogy with the DGLAP evolution of partons within a hadron, which describes a slow logarithmic evolution in the distribution of the hadron's constituent partons with the energy scale at which they are probed.Comment: 36 pages; uses iopart.cls and feynmp.sty. v2: Minor typos corrected. Matches version published in JCA

    Evolution of fNL to the adiabatic limit

    Get PDF
    We study inflationary perturbations in multiple-field models, for which zeta typically evolves until all isocurvature modes decay--the "adiabatic limit". We use numerical methods to explore the sensitivity of the nonlinear parameter fNL to the process by which this limit is achieved, finding an appreciable dependence on model-specific data such as the time at which slow-roll breaks down or the timescale of reheating. In models with a sum-separable potential where the isocurvature modes decay before the end of the slow-roll phase we give an analytic criterion for the asymptotic value of fNL to be large. Other examples can be constructed using a waterfall field to terminate inflation while fNL is transiently large, caused by descent from a ridge or convergence into a valley. We show that these two types of evolution are distinguished by the sign of the bispectrum, and give approximate expressions for the peak fNL.Comment: v1: 25 pages, plus Appendix and bibliography, 6 figures. v2: minor edits to match published version in JCA
    • …
    corecore